An Alternative to Factorization: a Speedup for SUDAN’s Decoding Algorithm and its Generalization to Algebraic-Geometric Codes

نویسندگان

  • Daniel Augot
  • Lancelot Pecquet
چکیده

We propose an improvement to Sudan's algorithm for decoding Reed-Solomon codes beyond half of their minimum distance, and its generalisation to algebraic-geometric codes. Both algorithms, in their original version, involve factorisation of polynomials. The main idea consists in replacing factorisation by an iterative root nding procedure of low complexity based on Newton approximation. In the case of Reed-Solomon codes we give real complexity of-reconstruction. Une alternative la factorisation: accellration de l'algorithme de ddcodage de Sudan et de sa ggnnralisation aux codes ggommtriques RRsumm : Nous proposons une ammlioration l'algorithme de Sudan pour ddcoder les codes de Reed-Solomon au dell de la moitii de leur distance minimum, ainsi qu'' sa ggnnralisation aux codes ggommtriques. La factorisation de polynnmes intervient dans la version initiale de ces deux algorithmes. L'idde principale que nous prrsentons consiste remplacer cette factorisation par une recherche ittrative de racines, dont la complexitt est faible, basse sur l'algorithme d'approximation de Newton. Grrce cette modiication, nous pouvons donner la complexitt eeective de la-reconstruction des codes de Reed-Solomon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes

This paper presents an algorithmic improvement to Sudan’s list-decoding algorithm for Reed-Solomon codes and its generalization to algebraic-geometric codes from Shokrollahi and Wasserman. Instead of completely factoring the interpolation polynomial over the function field of the curve, we compute sufficiently many coefficients of a Hensel development to reconstruct the functions that correspon...

متن کامل

A Displacement Structure Approach to List Decoding of Reed-Solomon and Algebraic-Geometric Codes∗

Using the method of displacement we shall develop a unified framework for derivation of efficient list decoding algorithms for algebraic-geometric codes. We will demonstrate our method by accelerating Sudan’s list decoding algorithm for Reed-Solomon codes [22], its generalization to algebraicgeometric codes by Shokrollahi and Wasserman [21], and the recent improvement of Guruswami and Sudan [8]...

متن کامل

A class of Sudan-decodable codes

In this correspondence, Sudan’s algorithm is modified into an efficient method to list-decode a class of codes which can be seen as a generalization of Reed–Solomon codes. The algorithm is specialized into a very efficient method for unique decoding. The code construction can be generalized based on algebraic-geometry codes and the decoding algorithms are generalized accordingly. Comparisons wi...

متن کامل

Fast Computation of Roots of Polynomials over Function Fields and Fast List Decoding of Algebraic Geometric Codes

Suppose C is a [n, k, d] code over Fq, t < n is a positive integer. For any received vector y = (y1, · · · , yn) ∈ Fq , we refer to any code word c in C satisfying d(c,y) ≤ t as a tconsistent code word. A decoding problem is in fact the problem of finding an effective (or efficient) algorithm which can find t-consistent code words, and we call such an algorithm a decoding algorithm that can cor...

متن کامل

A generalized implicit enumeration algorithm for a class of integer nonlinear programming problems

Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998